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ABSTRACT: The epidermal growth factor receptor
(EGFR) tyrosine kinase is implicated in a large number
of human cancers. Most EGFR inhibitors target the
extracellular, growth factor-binding domain or the intra-
cellular, ATP-binding domain. Here we describe molecules
that inhibit the kinase activity of EGFR in a new way, by
competing with formation of an essential intradimer coiled
coil containing the juxtamembrane segment from each
member of the receptor partnership. The most potent
molecules we describe bind EGFR directly, decrease the
proliferation of wild-type and mutant EGFR-dependent
cells lines, inhibit phosphorylation of EGFR and down-
stream targets, and block coiled coil formation as judged
by bipartite tetracysteine display. Potency is directly
correlated with the ability to block coiled coil formation
within full-length EGFR in cells.

T he epidermal growth factor receptor (EGFR)' ™ tyrosine
kinase is implicated in a large number of human cancers.*
Four EGFR inhibitors have been approved for use: cetuximab>®
is a monoclonal antibody that directly inhibits the binding of
growth factors to the EGFR extracellular domain,” whereas
gefitinib, erlotinib, and afatinib® "' are tyrosine kinase
inhibitors (TKIs) that directly inhibit the binding of ATP to
the intracellular catalytic domain.*'> Other molecules in these
two categories, including reversible and irreversible TKIs that
inhibit the drug-resistant EGFR double mutant, are in clinical
development."*™"? Here we describe molecules that inhibit
EGFR in a third way, via allostery,”®*" by blocking the
formation of a coiled coil dimer in the juxtamembrane (JM)
segment (Figure 1A) that is essential for assembly of the active,
asymmetric kinase dimer.

Recently we reported, using a tool known as bipartite
tetracysteine display,”** that the binding of the epidermal
growth factor (EGF)** to the extracellular domain of full-length
EGFR' ™ leads to the assembly of an antiparallel coiled coil
composed of the JM segment from each member of the protein
pair. The JM segment is located between the transmembrane
helix and the kinase domain (Figure 1A) and is essential for
kinase function.”>"*” EGFR variants that lack a JM segment28
or contain amino acid substitutions that reduce a-helix
propensity”® are catalytically inactive. Other variants that
disfavor assembly of the active, asymmetric kinase dimer*® do
not support formation of the JM coiled coil.*® These
observations suggest that ligands capable of inhibiting coiled
coil formation should inhibit the EGFR kinase via an allosteric
mechanism. Indeed, a polypeptide containing the EGFR JM

-4 ACS Publications  © 2014 American Chemical Society

A <« eXtra-
_ EGFo cellular
juxta- ~ P — domain

membrane coiled

segment T ol

dimer
kinase 7 = kinase
domain dimer

B

JMwT VRKRTLRRLLQERELVE
VRKRZLRRLLQXRELVE

E2S VRKRTLRXLLQXRELVE
E4S VRKRTLRBLLXERELVE
T4S VRKRXLRRXLQERELVE
T1S VRKRTXRRLXQERELVE
E1ALS VRKRZARRAAQXRELVE
VRabcdefgabcdelLVE

Figure 1. (A) Potential equilibria between EGFR monomers and
dimers + growth factor (EGF) and allosteric inhibitors. (B) Helical
wheel representation and sequences of hydrocarbon-stapled peptides.
Z, X, and B represent (R)-2-(7'-octenyl)alanine, (S)-2-(4'-pentenyl)-
alanine, and (R)-2-(4'-pentenyl)alanine, respectively. Peptides con-
strained with a hydrocarbon staple are indicated with the superscript S.

segment fused to a polycationic region from HIV Tat (TE-
64562) inhibits EGFR signaling, but neither its binding mode
nor its mechanism of action is understood, as kinase activity
itself was unaffected.*®

Previous work has shown that peptides containing judiciously
positioned i+3, i+4, and i+7 macrocyclic bridges (often referred
to as hydrocarbon staples) can display improved a-helix
content, protease resistance, and, in some cases, cellular uptake
when comlpared to unmodified peptides with similar
sequences.”’ >° These features make hydrocarbon-stapled
peptides uniquely suited to evaluate the JM coiled coil as an
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allosteric regulatory site for EGFR. To begin this evaluation, we
synthesized five peptides comprising the 17-residue JM-A
segment (EGFR residues 645—662) and a single hydrocarbon
staple at one of five positions around the helix circumference
(Figure 1B and Supporting Information, Figures S1 and S2).
Four of the peptides (E1%, E25, E4% and T4%) contain a
hydrocarbon staple on the helix face opposite that used for
EGF-stimulated coiled coil formation.”> One peptide (T1%),
prepared as a control, contains a hydrocarbon staple that blocks
the helix face used for EGF-stimulated coiled coil forma-
tion.”>*® Two additional peptides contain the unmodified JM-A
sequence fused to a polycationic region of HIV Tat (TE-
64562)*° or not (JM-WT). As expected, all hydrocarbon-
stapled peptides displayed greater a-helical content than JM-
WT or TE-64562 (Figure S3). We reasoned that if the JM
coiled coil regulates EGFR activity via allostery, then ligands
E15, E25, E4°% and T4% should inhibit EGFR activity and
decrease the viability of EGFR-dependent cell lines, albeit to
varying degree, whereas T1° and JM-WT should have little or
no effect.

We evaluated the effect of each molecule on the viability of
four EGFR-dependent cell lines that differ in cancer/tissue type
as well as EGFR expression level and mutational state and one
cell line that does not express EGFR (Figures 2 and S4 and
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Figure 2. Effect of native and hydrocarbon-stapled peptides on cell
proliferation. Plot of % viable cells remaining after 18 h treatment with
[ligand] shown. Viability was assessed by monitoring oxyluciferin
production by Ultra-Glow luciferase, a reaction that requires ATP.
Error bars show standard error of the mean.

Table S3). A431 and H2030 cells express wild-type EGFR,
whereas H3255 and H1975 cells express single (L8S8R) or
double (L858R/T790M) mutant forms, respectively; SK-N-
MC cells express ErbB2- 4 but not EGFR.***73® Examination
of the dose—response curves reveals several trends. First, as
expected, cells expressing wild-type EGFR (A431) or the
L8S8R mutant (H3255) are sensitive to gefitinib in the
expected concentration range, whereas those expressing the
EGFR double mutant (H1975) or no EGFR (SK-N-MC) are
not.>” Second, none of the cells are sensitive to JM-WT, an
unmodified (and non-cell-permeable) peptide containing the
EGFR JM-A sequence; fusion of JM-WT to a polycationic
region of HIV Tat results in moderate decreases in viability
after 18 h incubation, as reported;** potency is mitigated
significantly after 72 h, perhaps because of degradation (Figure
SS).

Most importantly, all EGFR-expressing cell lines are sensitive
to one or more hydrocarbon-stapled peptides, with potency
following the order E1% > E2° > T4% > E4%. T1° was inactive in
all cell lines tested. In all cases, the most potent inhibitor (E1°)
carries the hydrocarbon bridge on the helix face that lies
opposite that used for EGF-induced coiled coil formation,”®
whereas the least potent molecule (T1°) is bridged within this
face, with the bridge replacing two leucine side chains that
contribute to the antiparallel coiled coil interface.”® Both of
these molecules gain entry to the cytosol, as judged by a
previously reported®®*® image-based translocation assay
(Figure S11). EI° is 10-fold more potent than El, 5 in
which the two leucines are replaced by alanine, and was
between 2 and 10 times more potent than the previously
reported TE-64562 peptide,®® with the largest difference in
H3255 cells that express L858R EGFR. These observations
suggest that the decrease in cell viability observed in the
presence of E1° results from a direct interaction of the helical
peptide mimetic with the JM region of EGFR.

Activation of EGFR upon growth factor binding leads to a
well-characterized pattern of Tyr and Ser/Thr autophosphor-
ylation events that initiate downstream signaling networks.*’
Molecules that block growth factor binding to the extracellular
domain, or ATP binding to the intracellular kinase domain,
inhibit the phosphorylation of both EGFR and downstream
factors such as Erk and Akt.* We used immunoblots to evaluate
whether the effects of native and hydrocarbon-stapled peptides
on the viability of EGFR-dependent cell lines correlated with
their effects on EGFR phosphorylation and the phosphor-
ylation of downstream factors. We probed specifically for
phosphorylation at EGFR tyrosines 845, 1045, 1068, 1086,
1148, and 1173 and for phospho-Akt and phospho-Erk1/2
(Figures 3 and S6).

Incubation of A431 cells with 1—50 M E1° led to a dose-
dependent decrease in EGFR phosphorylation at positions
Y84S, Y1045, Y1086, and Y1173 (Figure 3, red bars);
phosphorylation at Y1068 and Y1148 was affected minimally,
if at all (see also Figure S7). A431 cells treated with E1° also
showed decreased levels of phospho-Akt and phospho-Erk; the
levels of EGFR, Akt, and Erk themselves were unaffected. The
pattern of phosphorylation changes induced by E1° paralleled
those observed with TE-64562. E25 and E1,, 5, which had more
modest effects on cell viability (Figure 2), caused little or no
decrease in phosphorylation at any position, whereas T1°, E4°,
and T4® led to small increases in phosphorylation at many
positions. Thus, in A431 cells, there is a correlation between the
effect of hydrocarbon-stapled peptides on cell viability and
decreases in EGFR autophosphorylation and downstream
signaling.

Two additional experiments were performed to evaluate
whether the El1%-induced viability changes and decreases in
EGFR and Erk/Akt phosphorylation resulted from a direct
interaction with the EGFR JM segment. First, we evaluated the
extent to which biotinylated analogues of E1% and T1° as well as
JM-WT and El,° (PE15, BT15, BJM-WT, and PEl1,;5
respectively) could sequester full-length EGFR (wtEGFR)
from transiently transfected CHO-K1 cell lysates. Each
biotinylated analogue (25 yM) was incubated for 1 h with
lysates from wtEGFR-expressing cells, and then with Mag-
Sepharose streptavidin beads overnight. A mock reaction
lacking a biotinylated analogue was run alongside. After
washing, the sequestered proteins were eluted, resolved by
SDS-PAGE, probed with a commercial anti-EGFR antibody,
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Figure 3. Effect of native and hydrocarbon-stapled peptides on
phosphorylation of EGFR, Akt, and Erk1/2. A431 cells were treated
with 10 uM of the ligand shown for 2 h, stimulated with 10 ng/mL
EGF, and then lysed, immunoblotted, and visualized. Plots show the
increase (green) or decrease (red) in intensity of the indicated
phospho-protein band between treated and untreated cells. Error bars
represent the standard error of the mean over at least four trials.

visualized with a horseradish peroxidase-tagged mouse anti-
rabbit secondary antibody, and quantified with chemilumines-
cent detection. PE1° and, less effectively, "E1,,° sequestered
full-length, wild-type EGFR from the cell lysates, whereas *T1°
and "JM-WT did not (Figure 4). Little or no EGFR was
sequestered when no biotinylated peptide was added (mock),
providing additional support for a direct interaction between
the hydrocarbon-stapled peptide E1° and the JM segment of
wild-type EGFR.

Finally, we made use of a previously reported bipartite

tetracysteine display*>** assay to probe whether E1° inhibited
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Figure 4. E1° sequesters wtEGFR from CHO-K1 cell lysates. Lysates
were treated with 25 uM of the biotinylated peptide shown (1 h) and
then incubated with streptavidin-coated beads overnight. Sequestered
proteins were eluted, electrophoresed, and immunoblotted to detect
EGFR. Band intensities were measured using Image].*"

intradimer coiled coil formation within the JM region of full-
length EGFR on the mammalian cell surface (Figure 5).*> We
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Figure S. Monitoring EGFR coiled coil formation using TIRF-M and
bipartite tetracysteine display. CHO cells were transfected with EGFR
CCy-1, treated with 1 M ligand for 1 h, stimulated with 100 ng/mL
EGF for 30 min, and labeled with ReAsH.?® Plot shows the change in
ReAsH fluorescence of n cells after correction for differences in
expression. Errors represent standard error of the mean: **p < 0.01,
*HEEp < 0.0001; one-way ANOVA with Bonferroni post-analysis
accounting for multiple comparisons.

used CHO cells expressing an EGFR variant (CCy-1) with a
cysteine pair within the JM whose location supports ReAsH
binding and fluorescence upon EGF-induced coiled coil
assembly.”> We reasoned that if E1° inhibits formation of the
JM coiled coil, it should also decrease the ability of CCy-1 to
bind ReAsH and fluoresce in the presence of EGF.

CHO cells transiently expressing the EGFR variant CCy-1
on the cell surface were exposed to native and hydrocarbon-
stapled peptides, stimulated with EGF, and incubated with
ReAsH, and the fluorescence increase due to ReAsH was
quantified using total internal reflectance fluorescence micros-
copy (TIRF-M). Treatment with EGF alone led to the
expected increase in ReAsH fluorescence at the cell surface;
this increase was unchanged by the presence of JM-WT, E4°,
T1% or T4% consistent with their inability to decrease the
viability of EGFR-expressing cells (Figure 2) and sequester
transfected EGFR from CHO cell lysates (Figure 3). However,
treatment of cells with 1 M E15, E25, E1,,;5, and, to a lesser
extent, TE-64562 led to a significant loss in ReAsH
fluorescence, which we infer to represent a loss in coiled coil
structure. At a lower concentration only E1° and E1,;® reduced
the ReAsH signal (Figure S8). Identical results were observed
when cells were treated first with EGF and then with peptide
(Figure S9). No peptide tested affected ReAsH fluorescence in
the absence of EGF (Figure S10). These data support a model
in which E1%, E1,,5 E25 and, to a lesser extent, TE-64562
interact with the EGFR JM segment to inhibit formation of the
intradimer coiled coil. Taken with the cell viability, pull-down,
and immunoblotting experiments, we propose that E1°
allosterically inhibits EGFR by disrupting intradimer coiled
coil formation within the juxtamembrane segment.

B ASSOCIATED CONTENT

© Supporting Information
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